Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6824, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514726

RESUMO

Over the last 20 years, industry interest in copper has increased. Its application in the petrochemical, automotive, and nuclear power industries highlights the need for new research directions especially in the joining of copper to other metals. In this work, lap joint of 304 stainless steel and T2 copper precoated with Cu-Mn-Ni filler metal was performed by laser brazing. The aim of this study is to characterize the influence of laser beam incidence angle on the welded joint forming mode, microstructure, elements diffusion and corrosion resistance. According to the findings, the joint is classified as a welded joint when the laser beam incidence angle is 80°, and as a welded-brazed joint when it's 90°, 70°, or 60°. The microstructure is mainly composed of Cu-rich and Fe-rich phases, Mn in the Cu-rich phase aggregation and Cr in the Fe-rich phase aggregation. In the fusion zone (FZ) the content of less than 50% of the liquid will be in the form of supersaturated droplets in the matrix of the other side. The local corrosion pair that the copper steel matrix and liquid drop produce in the FZ speeds up the dissolution of the Cu-rich phase, which effected corrosion resistance of the joint.

2.
Materials (Basel) ; 17(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203970

RESUMO

The SA516 Gr.70 steel possessing excellent toughness and plasticity has been widely used in the cryogenic field. However, the appearance of coarse bainite in the heat affected zone (HAZ) of the fusion welded joint deteriorates the toughness and ductility. In this work, 4.5 mm thick SA516 Gr.70 steel was joined using shielded metal arc welding (SMAW) and friction stir welding (FSW), respectively, and the microstructure and mechanical properties of joints were investigated in detail. The Charpy energy in the HAZ in the FSW joint was 80 J/cm2, which was higher than that of the HAZ in the SMAW joint (60 J/cm2) and due to microstructure refinement. In addition, the total elongation (TE) of the SMAW joint was 17.5%, which was higher than that of the FSW joint (12.1%) and caused by a wider nugget zone with high hardness. The post-welding annealing was used to improve the toughness and ductility of the SMAW and FSW joints, and the microstructure and mechanical properties of the joints after annealing were analyzed. The toughness in the HAZ of the SMAW and FSW joints were 80 and 103 J/cm2, and the TE of the SMAW and FSW joints were 18.6% and 25.2%, respectively. Finally, the as-annealed FSW joints exhibited excellent toughness and ductility. The abovementioned excellent mechanical properties were primarily attributed to the appearance of tempering martensite, decrease in dislocation density, and fine grain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...